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Introduction

OVERVIEW A laser is a device that amplifies light
and produces a highly directional, high-intensity
beam that most often has a very pure frequency or
wavelength. It comes in sizes ranging from approx-
imately one tenth the diameter of a human hair to
the size of a very large building, in powers ranging
from 10−9 to 1020 W, and in wavelengths ranging
from the microwave to the soft–X-ray spectral regions
with corresponding frequencies from 1011 to 1017 Hz.
Lasers have pulse energies as high as 104 J and pulse
durations as short as 5 × 10−15 s. They can easily
drill holes in the most durable of materials and can

weld detached retinas within the human eye. They are
a key component of some of our most modern com-
munication systems and are the “phonograph needle”
of our compact disc players. They perform heat treat-
ment of high-strength materials, such as the pistons of
our automobile engines, and provide a special surgi-
cal knife for many types of medical procedures. They
act as target designators for military weapons and pro-
vide for the rapid check-out we have come to expect
at the supermarket. What a remarkable range of char-
acteristics for a device that is in only its fifth decade
of existence!

INTRODUCTION
There is nothing magical about a laser. It can be thought of as just another type
of light source. It certainly has many unique properties that make it a special light
source, but these properties can be understood without knowledge of sophisticated
mathematical techniques or complex ideas. It is the objective of this text to explain
the operation of the laser in a simple, logical approach that builds from one con-
cept to the next as the chapters evolve. The concepts, as they are developed, will
be applied to all classes of laser materials, so that the reader will develop a sense
of the broad field of lasers while still acquiring the capability to study, design, or
simply understand a specific type of laser system in detail.

DEFINITION OF THE LASER
The word laser is an acronym for Light Amplification by Stimulated Emission of
Radiation. The laser makes use of processes that increase or amplify light signals
after those signals have been generated by other means. These processes include
(1) stimulated emission, a natural effect that was deduced by considerations re-
lating to thermodynamic equilibrium, and (2) optical feedback (present in most

1



2 INTRODUCTION

Figure 1-1 Simplified
schematic of typical laser

lasers) that is usually provided by mirrors. Thus, in its simplest form, a laser con-
sists of a gain or amplifying medium (where stimulated emission occurs), and a
set of mirrors to feed the light back into the amplifier for continued growth of the
developing beam, as seen in Figure 1-1.

SIMPLICITY OF A LASER
The simplicity of a laser can be understood by considering the light from a candle.
Normally, a burning candle radiates light in all directions, and therefore illumi-
nates various objects equally if they are equidistant from the candle. A laser takes
light that would normally be emitted in all directions, such as from a candle, and
concentrates that light into a single direction. Thus, if the light radiating in all di-
rections from a candle were concentrated into a single beam of the diameter of the
pupil of your eye (approximately 3 mm), and if you were standing a distance of
1 m from the candle, then the light intensity would be 1,000,000 times as bright as
the light that you normally see radiating from the candle! That is essentially the
underlying concept of the operation of a laser. However, a candle is not the kind of
medium that produces amplification, and thus there are no candle lasers. It takes
relatively special conditions within the laser medium for amplification to occur,
but it is that capability of taking light that would normally radiate from a source in
all directions – and concentrating that light into a beam traveling in a single direc-
tion – that is involved in making a laser. These special conditions, and the media
within which they are produced, will be described in some detail in this book.

UNIQUE PROPERTIES OF A LASER
The beam of light generated by a typical laser can have many properties that are
unique. When comparing laser properties to those of other light sources, it can
be readily recognized that the values of various parameters for laser light either
greatly exceed or are much more restrictive than the values for many common
light sources. We never use lasers for street illumination, or for illumination within
our houses. We don’t use them for searchlights or flashlights or as headlights in
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our cars. Lasers generally have a narrower frequency distribution, or much higher
intensity, or a much greater degree of collimation, or much shorter pulse duration,
than that available from more common types of light sources. Therefore, we do use
them in compact disc players, in supermarket check-out scanners, in surveying in-
struments, and in medical applications as a surgical knife or for welding detached
retinas. We also use them in communications systems and in radar and military
targeting applications, as well as many other areas. A laser is a specialized light
source that should be used only when its unique properties are required.

THE LASER SPECTRUM AND WAVELENGTHS
A portion of the electromagnetic radiation spectrum is shown in Figure 1-2 for the
region covered by currently existing lasers. Such lasers span the wavelength range
from the far infrared part of the spectrum (λ = 1,000 µm) to the soft–X-ray region
(λ = 3 nm), thereby covering a range of wavelengths of almost six orders of mag-
nitude. There are several types of units that are used to define laser wavelengths.
These range from micrometers or microns (µm) in the infrared to nanometers (nm)
and angstroms (Å) in the visible, ultraviolet (UV), vacuum ultraviolet (VUV), ex-
treme ultraviolet (EUV or XUV), and soft–X-ray (SXR) spectral regions.

WAVELENGTH UNITS

1 µm = 10−6 m;
1 Å = 10−10 m;
1 nm = 10−9 m.

Consequently, 1 micron (µm) = 10,000 angstroms (Å) = 1,000 nanometers (nm).
For example, green light has a wavelength of 5 ×10−7 m = 0.5 µm = 5,000 Å =
500 nm.

Figure 1-2 Wavelength
range of various lasers
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WAVELENGTH REGIONS

Far infrared: 10 to 1,000 µm;
middle infrared: 1 to 10 µm;
near infrared: 0.7 to 1 µm;
visible: 0.4 to 0.7 µm, or 400 to 700 nm;
ultraviolet: 0.2 to 0.4 µm, or 200 to 400 nm;
vacuum ultraviolet: 0.1 to 0.2 µm, or 100 to 200 nm;
extreme ultraviolet: 10 to 100 nm;
soft X-rays: 1 nm to approximately 20–30 nm (some overlap with EUV).

A BRIEF HISTORY OF THE LASER
Charles Townes took advantage of the stimulated emission process to construct a
microwave amplifier, referred to as a maser. This device produced a coherent beam
of microwaves to be used for communications. The first maser was produced in
ammonia vapor with the inversion between two energy levels that produced gain at
a wavelength of 1.25 cm. The wavelengths produced in the maser were compara-
ble to the dimensions of the device, so extrapolation to the optical regime – where
wavelengths were five orders of magnitude smaller – was not an obvious extension
of that work.

In 1958, Townes and Schawlow published a paper concerning their ideas about
extending the maser concept to optical frequencies. They developed the concept
of an optical amplifier surrounded by an optical mirror resonant cavity to allow for
growth of the beam. Townes and Schawlow each received a Nobel Prize for his
work in this field.

In 1960, Theodore Maiman of Hughes Research Laboratories produced the
first laser using a ruby crystal as the amplifier and a flashlamp as the energy source.
The helical flashlamp surrounded a rod-shaped ruby crystal, and the optical cavity
was formed by coating the flattened ends of the ruby rod with a highly reflecting
material. An intense red beam was observed to emerge from the end of the rod
when the flashlamp was fired!

The first gas laser was developed in 1961 by A. Javan, W. Bennett, and D. Har-
riott of Bell Laboratories, using a mixture of helium and neon gases. At the same
laboratories, L. F. Johnson and K. Nassau demonstrated the first neodymium laser,
which has since become one of the most reliable lasers available. This was followed
in 1962 by the first semiconductor laser, demonstrated by R. Hall at the General
Electric Research Laboratories. In 1963, C. K. N. Patel of Bell Laboratories dis-
covered the infrared carbon dioxide laser, which is one of the most efficient and
powerful lasers available today. Later that same year, E. Bell of Spectra Physics
discovered the first ion laser, in mercury vapor. In 1964 W. Bridges of Hughes Re-
search Laboratories discovered the argon ion laser, and in 1966 W. Silfvast, G. R.
Fowles, and B. D. Hopkins produced the first blue helium–cadmium metal vapor
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laser. During that same year, P. P. Sorokin and J. R. Lankard of the IBM Research
Laboratories developed the first liquid laser using an organic dye dissolved in a sol-
vent, thereby leading to the category of broadly tunable lasers. Also at that time,
W. Walter and co-workers at TRG reported the first copper vapor laser.

The first vacuum ultraviolet laser was reported to occur in molecular hydro-
gen by R. Hodgson of IBM and independently by R. Waynant et al. of the Naval
Research Laboratories in 1970. The first of the well-known rare-gas–halide ex-
cimer lasers was observed in xenon fluoride by J. J. Ewing and C. Brau of the
Avco–Everett Research Laboratory in 1975. In that same year, the first quantum-
well laser was made in a gallium arsenide semiconductor by J. van der Ziel and
co-workers at Bell Laboratories. In 1976, J. M. J. Madey and co-workers at Stan-
ford University demonstrated the first free-electron laser amplifier operating in the
infrared at the CO2 laser wavelength. In 1979, Walling and co-workers at Allied
Chemical Corporation obtained broadly tunable laser output from a solid-state laser
material called alexandrite, and in 1985 the first soft–X-ray laser was successfully
demonstrated in a highly ionized selenium plasma by D. Matthews and a large num-
ber of co-workers at the Lawrence Livermore Laboratories. In 1986, P. Moulton
discovered the titanium sapphire laser. In 1991, M. Hasse and co-workers devel-
oped the first blue-green diode laser in ZnSe. In 1994, F. Capasso and co-workers
developed the quantum cascade laser. In 1996, S. Nakamura developed the first
blue diode laser in GaN-based materials.

In 1961, Fox and Li described the existence of resonant transverse modes in
a laser cavity. That same year, Boyd and Gordon obtained solutions of the wave
equation for confocal resonator modes. Unstable resonators were demonstrated
in 1969 by Krupke and Sooy and were described theoretically by Siegman. Q-
switching was first obtained by McClung and Hellwarth in 1962 and described
later by Wagner and Lengyel. The first mode-locking was obtained by Hargrove,
Fork, and Pollack in 1964. Since then, many special cavity arrangements, feedback
schemes, and other devices have been developed to improve the control, operation,
and reliability of lasers.

OVERVIEW OF THE BOOK
Isaac Newton described light as small bodies emitted from shining substances.
This view was no doubt influenced by the fact that light appears to propagate in a
straight line. Christian Huygens, on the other hand, described light as a wave mo-
tion in which a small source spreads out in all directions; most observed effects –
including diffraction, reflection, and refraction – can be attributed to the expansion
of primary waves and of secondary wavelets. The dual nature of light is still a use-
ful concept, whereby the choice of particle or wave explanation depends upon the
effect to be considered.

Section One of this book deals with the fundamental wave properties of light,
including Maxwell’s equations, the interaction of electromagnetic radiation with
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matter, absorption and dispersion, and coherence. Section Two deals with the fun-
damental quantum properties of light. Chapter 3 describes the concept of discrete
energy levels in atomic laser species and also how the periodic table of the ele-
ments evolved. Chapter 4 deals with radiative transitions and emission linewidths
and the probability of making transitions between energy levels. Chapter 5 con-
siders energy levels of lasers in molecules, liquids, and solids – both dielectric
solids and semiconductors. Chapter 6 then considers radiation in equilibrium and
the concepts of absorption and stimulated emission of radiation. At this point the
student has the basic tools to begin building a laser.

Section Three considers laser amplifiers. Chapter 7 describes the theoreti-
cal basis for producing population inversions and gain. Chapter 8 examines laser
gain and operation above threshold, Chapter 9 describes how population inversions
are produced, and Chapter 10 considers how sufficient amplification is achieved
to make an intense laser beam. Section Four deals with laser resonators. Chap-
ter 11 considers both longitudinal and transverse modes within a laser cavity, and
Chapter 12 investigates the properties of stable resonators and Gaussian beams.
Chapter 13 considers a variety of special laser cavities and effects, including un-
stable resonators, Q-switching, mode-locking, pulse narrowing, ring lasers, and
spectral narrowing.

Section Five covers specific laser systems. Chapter 14 describes eleven of
the most well-known gas and plasma laser systems. Chapter 15 considers twelve
well-known dye lasers and solid-state lasers, including both dielectric solid-state
lasers and semiconductor lasers. The book concludes with Section Six (Chap-
ter 16), which provides a brief overview of frequency muliplication with lasers and
other nonlinear effects.


